Self Studies

Mathematics Test - 7

Result Self Studies

Mathematics Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If the two pairs of lines x2 – 2mxy – y2 = 0 and x2 – 2nxy – y2 = 0 are such that one of them represents the bisector of the angles between the other, then

    Solution
    Equation of bisectors of the angles between the lines is given by; \(\mathrm{x}^{2}-2 \mathrm{mxy}-\mathrm{y}^{2}=0\)
    \(\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-m}\)
    \(\mathrm{x}^{2}+\left(\frac{2}{\mathrm{m}}\right) \mathrm{xy}-\mathrm{y}^{2}=0 \ldots \ldots \ldots \ldots \ldots \ldots .(1)\)
    Given that \(x^{2}-2 n x y-y^{2}=0 \ldots \ldots \ldots . .(2)\)
    Comparing (1) and (2) we get \(\frac{2}{\mathrm{m}}=-2 \mathrm{n}\)
    \(-\mathrm{mn}=1\)
    \(\mathrm{nm}+1=0\)
    Hence option A is the correct answer.
  • Question 2
    1 / -0
    For any positive integer \(n, \int \frac{d x}{x^{n+1}+x}\) is equal to :
    Solution

    Let \(I=\int \frac{d x}{x\left(x^{n}+1\right)}\)

    \(\Rightarrow \quad I=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x\)

    Put \(x^{n}=t\)

    \(\Rightarrow\) \(n x^{n-1} d x=d t\)

    \(\Rightarrow x^{n-1} d x=\frac{1}{n} d t\)

    \(\therefore \quad I=\frac{1}{n} \int\left(\frac{1}{t}-\frac{1}{t+1}\right) d t\)

    \(=\frac{1}{n} \log \left(\frac{t}{t+1}\right)=\frac{1}{n} \log \left(\frac{x^{n}}{x^{n}+1}\right)+c\)

    Hence option C is the correct answer.

  • Question 3
    1 / -0
    If \(\overrightarrow{ a }\) is perpendicular to \(\vec{b}\) and \(\vec{c},|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4\) and the angle between \(\vec{b}\) and \(\vec{c}\) is \(\frac{2 \pi}{3},\) then \([\overrightarrow{ a } \overrightarrow{ b } \overrightarrow{ c }]\) is equal to :
    Solution
    \(\because[\vec{a} \vec{b} \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})\)
    \(=\vec{a} \cdot\left(|\vec{b}| \vec{c} \mid \sin \frac{2 \pi}{3} \hat{n}\right)\)
    \(=|\vec{a}| \cdot|\vec{b} \| \vec{c}|\left(\sin \frac{2 \pi}{3}\right)=2 \times 3 \times 4 \times \frac{\sqrt{3}}{2}\)
    \(=12 \sqrt{3}\)
    Hence option C is the correct answer.
  • Question 4
    1 / -0

    If f(x) = (x – 2)(x – 4)(x – 6)….(x – 2n), then f'(2) is equal to :

    Solution
    \(\because f(x)=(x-2)(x-4)(x-6) \ldots .(x-2 n)\)
    Taking log on both sides, we get \(\log f(x)=\log (x-2)+\log (x-4)\)
    \(+\ldots+\log (x-2 n)\)
    On differentiating w.r.t. \(x\), we get \(\frac{1}{f(x)} f^{\prime}(x)=\frac{1}{(x-2)}+\frac{1}{(x-4)}\)
    \(+\ldots+\frac{1}{(x-2 n)}\)
    \(f(x)=(x-4)(x-6) \ldots(x-2 n)\)
    \(+(x-2)(x-6) \ldots(x-2 n)\)
    \(+\ldots+(x-2)(x-6) \ldots(x-2(n-1))\)
    \(\therefore \quad f(2)=(-2)(-4) \ldots(2-2 n)\)
    \(=(-2)^{(2)}(1 \cdot 2 \cdot \ldots(n-1))=(-2)^{n-1}(n-1) !\)
    Hence option B is the correct answer.
  • Question 5
    1 / -0
    The solution of the differential equation \(x \frac{d y}{d x}+2 y=x^{2}\) is :
    Solution
    \(x \frac{d y}{d x}+2 y=x^{2}\)
    \(\therefore \frac{d y}{d x}+\frac{2}{x} y=x\)
    Integrating factor \(=e^{\int \frac{2}{x} d x}=x^{2}\)
    Required solution is \(y \cdot x^{2}=\int x^{3} d x=\frac{x^{4}}{4}+c^{1}=\frac{x^{4}+c}{4}\)
    \(\therefore y=\frac{x^{4}+c}{4 x^{2}}\)
    Hence option D is the correct answer.
  • Question 6
    1 / -0

    The differential equation of all non - horizontal lines in a plane is :

    Solution
    Let \(y=m x+c\) represents all non horizontal lines in a plane.
    \(\therefore \quad \frac{d y}{d x}=m\) and \(\frac{d^{2} y}{d x^{2}}=0\)
    Hence option A is the correct answer.
  • Question 7
    1 / -0

    The equation of the sphere concentric with the sphere 2x2 + 2y2 + 2z2 - 6x + 2y - 4z = 1 and double its radius is :

    Solution
    Equation of sphere is \(2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z-1=0\)
    Radius of sphere is \(\sqrt{\frac{9}{4}+\frac{1}{4}+\frac{4}{4}+\frac{1}{2}}=2\)
    Equation of family of concentric sphere is
    \(x^{2}+y^{2}+z^{2}-3 x+y-2 z+\lambda=0\)....(i)
    \(\therefore\) According to question,
    \(\sqrt{\frac{9}{4}+\frac{1}{4}+1-\lambda}=4\)
    \(\Rightarrow \quad \frac{14}{4}-\lambda=16\)
    \(\Rightarrow \quad \lambda=\frac{14}{4}-16=-\frac{25}{2}\)
    \(\therefore\) From Eq. (i)
    \(x^{2}+y^{2}+z^{2}-3 x+y-2 z-\frac{25}{2}=0\)
    \(\Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z-25=0\)
    Hence option D is the correct answer.
  • Question 8
    1 / -0
    Let f : R be a differentiable function and f(1) = 4. Find the value of
    \begin{equation}\lim _{x \rightarrow 1} \int_{4}^{f(x)} \frac{2 t}{x-1} d t, \text { if } f^{\prime}(1)=2\end{equation}
    Solution

    \(\lim _{x \rightarrow 1} \frac{\int_{4}^{f(x)} 2 t}{x-1}\)

    \(=\lim _{x \rightarrow 1} \frac{2 f(x) \cdot f^{\prime}(x)}{1}\)

    \(=2 f(1) \cdot f^{\prime}(1)=2 \cdot 4 \cdot 2=16\)

    Hence option A is the correct answer.

  • Question 9
    1 / -0

    If three natural numbers between 1 and 100 are selected randomly, then the probability that all are divisible by both 2 and 3 is :

    Solution
    The numbers are divisible by both 2 and 3 means no.'s divisible by \(6 .\)
    No. of no.'s divisible by 6 in 1 to 100 are 16
    No. of ways of selecting 3 of them are \(16_{\mathrm{C}_{3}}\)
    Probability \(=\frac{16_{\mathrm{C}_{3}}}{100_{\mathrm{C}_{3}}}=\frac{16 \times 15 \times 14}{100 \times 99 \times 98}\)
    \(=\frac{4}{1155}\)
    Hence option D is the correct answer.
  • Question 10
    1 / -0
    The sum to \(n\) terms of the series \(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+\ldots \ldots .\) is :
    Solution
    \begin{equation}\begin{array}{l} \frac{4}{3}+\frac{10}{9}+\frac{28}{27}+\ldots \text { upto } n \text { terms } \\ =\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+\ldots \end{array}\end{equation}upto n terms
    =n+131+13+132+.....nterm
    \begin{equation}\begin{array}{l} =n+\frac{\frac{1}{3}\left(1-\frac{1}{3^{n}}\right)}{1-\frac{1}{3}} \\ =\frac{2 n+1-\frac{1}{3^{n}}}{2^{n}(2 n+1)-1} \\ =\frac{3^{n}-1}{2\left(3^{n}\right)} \end{array}\end{equation}
    Hence option B is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now
OSZAR »