Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    1 / -0

    If \(a_{0}, a_{1}, a_{2}, \ldots,\) be the coefficients in the expansion of \(\left(1+x+x^{2}\right)^{n}\) in ascending powers

    of \(x,\) then \(a_{0} a_{1}-a_{1} a_{2}+a_{2} a_{3}-\ldots\)

  • Question 2
    1 / -0

    find the 7 th term in the expansion of \(\left(4 x-\frac{1}{2 \sqrt{x}}\right)^{13}\) ?

  • Question 3
    1 / -0

    The coefficient of \(x^{m}\) in \(:(1+x)^{m}+(1+x)^{m+1}+\ldots .+(1+x)^{n}, \quad m \leq n\) is ?

  • Question 4
    1 / -0

    Value of \(20_{1}^{C}-2 \times 20_{2}^{C}+3 \times 20_{3}^{C} \ldots 20 \times 20_{2}^{C} 0\) is :

  • Question 5
    1 / -0

    In the expansion of \(\left(3^{-\frac{x}{4}}+3^{\frac{5 x}{4}}\right)^{n}\) the sum of binomial coefficient is 256 and four times the term with greatest binomial coefficient exceeds the square of the third term by \(21 n\) then value of \(x\) is :

  • Question 6
    1 / -0

    In the expansion of (1 + x)n(1 + y)n(1+ z)n, then the sum of coefficients of the terms of degree mm is :

  • Question 7
    1 / -0

    If \(\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{39} x^{39}+a_{40} x^{40}\) then find the value of
    \(a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{38}\)

  • Question 8
    1 / -0

    \(\sum_{r=0}^{n-1} \frac{{ }^{n} C_{r}}{{ }^{n} C_{r}+{ }^{n} C_{r+1}}\) ?

  • Question 9
    1 / -0

    If matrix A is an circulant matrix whose elements of first row are a, b, c all >0 such that abc =1

    and ATA = I then a3+ b3+ c3 equals :

  • Question 10
    1 / -0

    If \(A=\left[a_{i j}\right] 3 \times 3\) is a square matrix so that \(a_{i j}=i^{2}-j^{2},\) then \(A\) is a :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now
OSZAR »