Self Studies

Mathematics Test - 33

Result Self Studies

Mathematics Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If α β  are eccentric angles of the extremities of a focal chord of an ellipse, then eccentricity of the ellipse is :

    Solution
    Let \(P(a \cos \alpha, b \sin \alpha)\) and \(Q(a \cos \beta, b \sin \beta)\) are the ends of focal chord of the
    ellipse
    $$
    \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
    $$
    then equatiion of \(\mathrm{PQ}\) is
    $$
    \frac{\mathrm{x}}{\mathrm{a}} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{\mathrm{y}}{\mathrm{b}} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)
    $$
    its pass through \((\pm a e, 0)\)
    $$
    \pm e \cos \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)
    $$
    Taking +ve sign, then
    $$
    \begin{array}{l}
    \mathrm{e}=\frac{\cos \left(\frac{a-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)} \\
    =\frac{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)} \\
    =\frac{\sin \alpha+\sin \beta}{\sin (\alpha+\beta)}
    \end{array}
    $$
    Hence, the correct option is (D)
  • Question 2
    1 / -0

    The value of definite integral \(\int_{0}^{1} \frac{\sin ^{-1} \sqrt{\mathrm{x}}}{\mathrm{x}^{2}-\mathrm{x} 1} \mathrm{d}\) x is equal to

    Solution
    put \(\mathrm{x}=\sin ^{2} \theta \Rightarrow \mathrm{dx}=\sin 2 \theta \mathrm{d} \theta\)
    \(\mathrm{I}=\int_{0}^{\pi / 2} \frac{(\theta \sin 2 \theta)}{\sin ^{4} \theta-\sin ^{2} \theta+1} \mathrm{d} \theta\)
    \(\mathrm{I}=\int_{0}^{\pi / 2} \frac{\left(\frac{\pi}{2}-\theta\right) \sin 2 \theta}{\cos ^{4} \theta-\cos ^{2} \theta+1} \mathrm{d} \theta\)
    \(=\int_{0}^{\pi / 2} \frac{\left(\frac{\pi}{2}-\theta\right) \sin 2 \theta}{\left(1-\sin ^{2} \theta\right)^{2}-\left(1-\sin ^{2} \theta\right)+1} \mathrm{d} \theta\)
    \(=\int_{0}^{\pi / 2} \frac{\left(\frac{\pi}{2}-\theta\right) \sin 2 \theta}{\sin ^{4} \theta-\sin ^{2} \theta+1} \mathrm{d} \theta\)
    adding (1) and (2)
    \(2 \mathrm{I}=\frac{\pi}{2} \int_{0}^{\pi / 2} \frac{\sin 2 \theta}{\sin ^{4} \theta-\sin ^{2} \theta+1} \mathrm{d} \theta\)
    put \(\sin ^{2} \theta=t\)
    \(2 \mathrm{I}=\frac{\pi}{2} \int_{0}^{1} \frac{\mathrm{dt}}{t^{2}-t+1}=\frac{\pi}{2} \int_{0}^{1} \frac{\mathrm{dt}}{\left(t-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\)
    \(2 \mathrm{I}=\left.\frac{\pi}{2} \cdot \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\left(t-\frac{1}{2}\right) \cdot 2}{\sqrt{3}}\right)\right|_{0} ^{1}\)
    \(2 \mathrm{I}=\frac{\pi}{\sqrt{3}}\left(\frac{2 \pi}{6}\right) \Rightarrow \mathrm{I}=\frac{\pi^{2}}{6 \sqrt{3}}\)
    Hence, the correct option is (A)
  • Question 3
    1 / -0

    tan−1(5/6)+12tan−1(11/60)=

    Solution
    \(\tan ^{-1} \frac{5}{6}+\frac{1}{2} \tan ^{-1} \frac{11}{60}\)
    \(\frac{1}{2} \tan ^{-1}\left(\frac{\frac{5}{6} \times 2}{1-\left(\frac{5}{6}\right)^{2}}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{11}{60}\right)\left[\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right]\)
    \(=\frac{1}{2} \tan ^{-1}\left(\frac{60}{11}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{11}{60}\right)\)
    \(=\frac{1}{2}\left[\cos ^{-1}\left(\frac{11}{60}\right)+\tan ^{-1}\left(\frac{11}{60}\right)\right]\left[\tan ^{-1} x=\cos ^{-1} \frac{1}{x}\right]\)
    \(=\frac{1}{2} \times \frac{\pi}{2}=\frac{\pi}{4}\) Because \(\left[\cos ^{-1} x+\tan ^{-1} x=\frac{\pi}{2}\right]\)
    Hence, the correct option is (C)
  • Question 4
    1 / -0

    If \(\frac{1}{\sqrt{2}}

    Solution
    Formula \(\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) x, y>0\)
    \(\therefore \cos ^{-1} x+\cos ^{-1}\left(\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right)=\cos ^{-1}\left[\frac{x\left(x+\sqrt{1-x^{2}}\right)}{\sqrt{2}}-\sqrt{1-x^{2}}\left(\sqrt{1-\frac{1+2 x \sqrt{1-x^{2}}}{2}}\right)\right]\)
    \(=\cos ^{-1}\left(\frac{x\left(x+\sqrt{1-x^{2}}\right)}{\sqrt{2}}-\sqrt{1-x^{2}} \sqrt{\frac{1-2 x \sqrt{1-x^{2}}}{2}}\right)\)
    \(=\cos ^{-1}\left(\frac{x\left(x+\sqrt{1-x^{2}}\right)}{\sqrt{2}}-\frac{\sqrt{1-x^{2}}}{\sqrt{2}}\left(x-\sqrt{1-x^{2}}\right)\right)\)
    \(=\frac{\pi}{4}\)
    \(=\cos ^{-1}\left(\frac{x^{2}+x \sqrt{1-x^{2}}}{\sqrt{2}}-\frac{\left(x-\sqrt{1-x^{2}} \sqrt{1-x^{2}}\right)}{\sqrt{2}}\right)\)
    \(\left.=\frac{x^{2}+x \sqrt{1-x^{2}}}{\sqrt{2}}-\left(\frac{x \sqrt{1-x^{2}}+x^{2}-1}{\sqrt{2}}\right)\right)\)
    \(=\frac{1}{\sqrt{2}}\)
    Hence, the correct option is (C)
  • Question 5
    1 / -0

    If \(\tan ^{-1}\left(x+\frac{2}{x}\right)-\tan ^{-1}\left(x-\frac{2}{x}\right)=\tan ^{-1}\left(\frac{4}{x}\right)\) then \(x=\)

    Solution
    \(\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) x, y,>0\)
    \(\therefore \tan ^{-1}\left(x+\frac{2}{x}\right)-\tan ^{-1}\left(x-\frac{2}{x}\right)=\tan ^{-1}\left(\frac{\frac{4}{x}}{1+\left(x^{2}-\frac{4}{x^{2}}\right)}\right)=\tan ^{-1}\left(\frac{4}{x}\right)\)
    [Given]
    \(\Rightarrow \frac{\frac{4}{x}}{1+x^{2}-\frac{4}{x^{2}}}=\frac{4}{x}\)
    \(\Rightarrow 1=1+x^{2}-\frac{4}{x^{2}}\)
    \(x^{4}=4\)
    \(x^{2}=2\)
    \(x=\pm \sqrt{2}\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0

    If sin−1(x)+sin−1(2x)=π/3, then x=

    Solution
    Given \(\sin ^{-1} x+\sin ^{-1}(2 x)=\frac{\pi}{3}\)
    \(\sin ^{-1} 2 x=\frac{\pi}{3}-\sin ^{-1} x\)
    take sin on both sides, \(2 x=\sin \frac{\pi}{3} \cos \sin ^{-1} x-\cos \frac{\pi}{3} \sin \sin ^{-1} x\)
    \(2 x=\sin \frac{\pi}{3} \cos \sin ^{-1} x-\cos \frac{\pi}{3} \sin \sin ^{-1} x\)
    \(2 x=\frac{\sqrt{3}}{2} \sqrt{1-x^{2}}-\frac{1}{2} x\)
    \(2 x+\frac{x}{2}-\frac{\sqrt{2\left(1-x^{2}\right)}}{2}\)
    \(\frac{5 x}{2}=\frac{\sqrt{3\left(1-x^{2}\right)}}{2}\)
    \(25 x^{2}=3-3 x^{2}\)
    \(28 x^{2}=3\)
    \(x^{2}=\frac{3}{28}\)
    \(x=\sqrt{\frac{3}{28}}\)
    Hence, the correct option is (C)
  • Question 7
    1 / -0

    If sin−1x+4cos−1x=π , then x=

    Solution
    \(\sin ^{-1} x+4 \cos ^{-1} x=\pi\)
    \(\frac{\pi}{2}+3 \cos ^{-1} x=\pi\)
    \(3 \cos ^{-1} x=\frac{\pi}{2}\)
    \(\cos ^{-1} x=\frac{\pi}{6}\)
    \(\Rightarrow x=\frac{\sqrt{3}}{2}\)
    Hence, the correct option is (C)
  • Question 8
    1 / -0

    \(\cos ^{-1}\left\{\frac{1}{\sqrt{2}}\left(\cos \frac{9 \pi}{10}-\sin \frac{9 \pi}{10}\right)\right\}=\)

    Solution
    \(\cos ^{-1}\left[\frac{1}{\sqrt{2}}\left(\cos \left(\frac{9 \pi}{10}\right)-\sin \frac{9 \pi}{10}\right)\right]\)
    \(=\cos ^{-1}\left(\cos \frac{\pi}{4}+\frac{9 \pi}{10}\right)[\because \cos A \cos B-\sin A \sin B=\cos (A+B)]\)
    \(=\cos ^{-1}\left(\cos \frac{46 \pi}{40}\right)\)
    \(=\cos ^{-1}\left(\cos \frac{23 \pi}{20}\right)=\cos ^{-1}\left(\cos \left(\pi+\frac{3 \pi}{20}\right)\right)\)
    \(=\cos ^{-1}\left(-\cos \frac{3 \pi}{20}\right)\left[\cos ^{-1}(-x)=\pi-\cos ^{-1} x\right]\)
    \(=\pi-\cos ^{-1} \cos \left(\frac{3 \pi}{20}\right)\)
    \(=\pi-\cos ^{-1} \cos 18^{\circ}\)
    as \(0<\frac{3 \pi}{20}<\frac{\pi}{2}\)
    \(\therefore \cos ^{-1}(\cos x)=x x \in\left[0, \frac{\pi}{2}\right]\)
    \(\therefore \cos ^{-1}\left(\frac{1}{\sqrt{2}}\left(\cos \left(\frac{9 \pi}{10}\right)-\sin \frac{9 \pi}{10}\right)\right)=\pi-\frac{3 \pi}{20}=\frac{17 \pi}{20}\)
    Hence, the correct option is (D)
  • Question 9
    1 / -0

    If \(\Delta A B C\) is right angled at \(C\), then \(\tan ^{-1}\left(\frac{a}{b+c}\right)+\tan ^{-1}\left(\frac{b}{c+a}\right)=\)

    Solution
    \(k=\tan ^{-1}\left(\frac{a}{b+c}\right)+\tan ^{-1}\left(\frac{b}{a+c}\right)\)
    \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\)
    \(k=\tan ^{-1}\left[\frac{\frac{a}{b+c}+\frac{b}{a+c}}{1-\frac{a b}{(a+c)(b+c)}}\right]\)
    \(=\tan ^{-1}\left(\frac{a^{2}+a c+b^{2}+b c}{a b+a c+b c+c^{2}-a b}\right)\)
    By cosine rule for triangle \(\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 b c}\)
    \(=\tan ^{-1}\left(\frac{2 b \cos c+c^{2}+a c+b c}{a c+b c+c^{2}}\right)\)
    Given \(C=90^{\circ}, \cos C=0\)
    \(=\tan ^{-1}\left(\frac{c^{2}+a c+b c}{a c+b c+c^{2}}\right)\)
    \(=\tan ^{-1}(1)\)
    \(=\frac{\pi}{4}\)
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    sin−1(sin5)+cos−1(cos7)−tan−1(tan5)=

    Solution
    As \(\sin ^{-1}(\sin \theta)=\theta\) for \(\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\)
    \(\cos ^{-1}(\cos \theta)=\theta\) for \(\theta \in[0, \pi]\)
    and \(\tan ^{-1}(\tan \theta)=\theta\) for \(\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
    \(\therefore \sin ^{-1}(\sin 5)+\cos ^{-1}(\cos 7)-\tan ^{-1}(\tan 5)\)
    \(=\sin ^{-1}(\sin (5-2 \pi))+\cos ^{-1}(\cos (7-2 \pi))-\tan ^{-1}(\tan (5-2 \pi))\)
    \(=5-2 \pi+7-2 \pi-5+2 \pi\)
    \(=7-2 \pi\)
    Hence, the correct option is (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now
OSZAR »