Self Studies

Mathematics Test - 25

Result Self Studies

Mathematics Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If the line 3x + 2y = 13divides the area enclosed by the curve, 9x2+4y2−18x−16y−11=0 into two parts then the ratio of the larger area to the smaller area is

    Solution
    Equation of given curve is \(9 x^{2}+4 y^{2}-18 x-16 y-11=0\)
    It can be reduced to \(\frac{(x-1)^{2}}{(2)^{2}}+\frac{(y-2)^{2}}{(3)^{2}}=1\) which is the equation of ellipse having it's principal axis parallel to coordinate axes
    \(\Rightarrow\) It's area \(=\pi \mathrm{ab}=\pi(2)(3)=6 \pi\)
    From the figure we can see that points of intersection of \(9 x^{2}+4 y^{2}-18 x-16 y-11=0\) and line \(3 x+2 y=13,\) have \(x=1,3\)
    \(\Rightarrow\) Smaller area between ellipse and line
    \(=\int_{1}^{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \mathrm{dx}=\int_{1}^{3}\left[2+\frac{3}{2} \sqrt{4-(\mathrm{x}-1)^{2}}-\frac{(13-3 \mathrm{x})}{2}\right] \mathrm{dx}\)
    \(=\left[2 \mathrm{x}+\frac{3}{2}\left\{\frac{(\mathrm{x}-1)}{2} \sqrt{4-(\mathrm{x}-1)^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{\mathrm{x}-1}{2}\right)\right\}-\frac{1}{2}\left\{13 \mathrm{x}-\frac{3 \mathrm{x}^{2}}{2}\right\}\right]_{1}^{3}\)
    \(=\frac{3 \pi}{2}-3\)
    \(\Rightarrow \frac{\text { Area of Larger region }}{\text { Area of smaller region }}=\frac{6 \pi-\left(\frac{3 \pi}{2}-3\right)}{\frac{3 \pi}{2}-3}\)
    \(=\frac{3 \pi+2}{\pi-2}\)
    Hence, the correct option is (A)
  • Question 2
    1 / -0

    The equation of a circle C1 is x2+y2−4x−2y−11=0. A circle C2 of radius 1 unit rolls on the outside of the circle C1 touching it externally. The locus of the centre of C2 has the equation

    Solution
    The centre of \(C_{1}=(2,1)\) and the radius \(=\sqrt{2^{2}+1^{2}+11}=4\)
    If \((\alpha, \beta)\) be the centre of \(\mathrm{C}_{2}, \sqrt{(\alpha-2)^{2}+(\beta-1)^{2}}=4+1\)
    \(\Rightarrow \alpha^{2}+\beta^{2}-4 \alpha-2 \beta-20=0\)
    Hence locus is \(\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-2 \mathrm{y}-20=0\)


    Hence, the correct option is (A)
  • Question 3
    1 / -0
    If \(a^{3}+b^{6}=2\), then the maximum value of the term independent of \(x\) in the expansion of \(\left(a x^{1 / 3}+b x^{-1 / 6}\right)^{9}\) \((a>0, b>0)\) is
    Solution
    Let \((r+1)\) th term be independent of \(x,\) then
    $$
    \begin{aligned}
    T_{r+1} &={ }^{g} C_{r}\left(a x^{\frac{1}{3}}\right)^{9-r}\left(b x^{-1 / 6}\right)^{r} \\
    &={ }^{9} C_{r} a^{9-r}, b^{r} \cdot x^{3-\frac{r}{3}-\frac{r}{6}}
    \end{aligned}
    $$
    As \(T_{r}+1\) is independent of \(x\)
    \(\therefore \quad 3-\frac{r}{3}-\frac{r}{6}=0\)
    \(\Rightarrow \quad r=6\)
    \(\therefore \quad T_{6+1}={ }^{9} C_{6} a^{3} b^{6}={ }^{9} C_{3} a^{3} b^{6}=84 a^{3} b^{6}\)
    \(\because \quad A M \geq G M\)
    \(\therefore \quad \frac{a^{3}+b^{6}}{2} \geq \sqrt{a^{3} b^{6}}\)
    \(\Rightarrow \quad \frac{2}{2} \geq \sqrt{a^{3} b^{6}}\)
    \(\Rightarrow \quad a^{3} b^{6} \leq 1\)
    or \(\quad 84 a^{3} b^{6} \leq 84\)
    or \(\quad T_{7} \leq 84\)
    \(\therefore \quad\) Maximum value \(=84\)
    Hence, the correct option is (D)
  • Question 4
    1 / -0
    The value of \(\int_{0}^{1}\left(\prod_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{x}+\mathrm{r})\right)\left(\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{1}{\mathrm{x}+\mathrm{k}}\right) \mathrm{dx}\) is
    Solution
    Let \(y=\prod_{r=1}^{n}(x+r)\)
    \(\mathbf{y}=(\mathbf{x}+\mathbf{1})(\mathbf{x}+2) \ldots \ldots(\mathbf{x}+\mathbf{n})\)
    \(\log \mathrm{y}=\log (\mathrm{x}+1)+\log (\mathrm{x}+2)+\ldots \ldots+\log (\mathrm{x}+\mathrm{n})\)
    \(\frac{1}{y} \frac{d y}{d x}=\frac{1}{x+1}+\frac{1}{x+2}+\ldots \ldots \ldots+\frac{1}{x+n}\)
    \(\frac{\mathrm{dy}}{\mathrm{dx}}=[(\mathrm{x}+1) \cdot(\mathrm{x}+2) \ldots \ldots(\mathrm{x}+\mathrm{n})]\left[\frac{1}{\mathrm{x}+1}+\frac{1}{\mathrm{x}+2}+\ldots \ldots+\frac{1}{\mathrm{x}+\mathrm{n}}\right]\)
    So given integration
    \(\mathrm{I}=\left[\prod_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{x}+\mathrm{r})\right]_{0}^{1}\)
    \(\mathrm{I}=\prod_{\mathrm{r}=1}^{\mathrm{n}}(1+\mathrm{r})-\prod_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{r})\)
    \(\mathrm{I}=(\mathrm{n}+1) !-\mathrm{n} !\)
    \(\mathrm{I}=\mathrm{n} \cdot \mathrm{n} !\)
    Hence, the correct option is (A)
  • Question 5
    1 / -0

    The function f(x) = x3+ λx2+ 5x + sin 2x will be an invertible function if λ belongs to the set -

    Solution
    For given function \(f(x)\)
    \(\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+2 \lambda \mathrm{x}+5+2 \cos 2 \mathrm{x}\)
    since \(\cos 2 x \in[-1,1]\)
    \(\Rightarrow 3 x^{2}+2 \lambda x+3 \leq f^{\prime}(x) \leq 3 x^{2}+2 \lambda x+7\)
    But \(3 x^{2}+2 \lambda x+7 \leq 0\) is not possible for all \(x \in R\) for any \(\lambda\)
    \(\therefore \mathrm{f}^{\prime}(\mathrm{x}) \geq 3 \mathrm{x}^{2}+2 \lambda \mathrm{x}+3 \geq 0\) for all \(x \Rightarrow D \leq 0,\) i.e., \(4 \lambda^{2}-4 \cdot 3 \cdot 3 \leq 0\)
    or \(\lambda^{2}-9 \leq 0 \Rightarrow-3 \leq \lambda \leq 3\)
    \(\therefore\) if \(-3 \leq \lambda \leq 3, \mathrm{f}(\mathrm{x})\) is strictly m.i. and so \(\mathrm{f}(\mathrm{x})\) is invertible.
    Hence, the correct option is (B)
  • Question 6
    1 / -0

    If the tangent and the normal to x2 - y2 = 4 at a point cut off intercepts a1 , a2 on the x-axis respectively and b1 , b2 on the y-axis respectively then the value of a1a2 + b1b2 is

    Solution
    Consider a general point \(P(\theta) \equiv(2 \sec \theta, 2 \tan \theta)\) On the given hyperbola
    The tangent at \((2 \sec \phi, 2 \tan \phi)\) is \(\mathrm{x} \sec \phi-\mathrm{y} \tan \phi=2\)
    \(\therefore \mathrm{a}_{1}=2 \cos \phi, \mathrm{b}_{1}=-2 \cot \phi\)
    The normal at \((2 \sec \phi, 2 \tan \phi)\) is \(\mathrm{x} \cos \phi+\mathrm{y} \cot \phi=4\)
    \(\therefore \mathrm{a}_{2}=4 \sec \phi, \mathrm{b}_{2}=4 \tan \phi\)
    \(\therefore \mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{b}_{2}=8 \cos \phi \sec \phi+(-2 \cot \phi)(4 \tan \phi)=8-8=0\)
    Hence, the correct option is (C)
  • Question 7
    1 / -0

    A line makes angles of 45° and 60° with the positive directions of x and y axes respectively. An angle, which the line can make with the positive direction of z-axis is:

    Solution
    Let \(\alpha, \beta, \gamma\) be the angles, which the line makes with the positive directions of \(x\) -axis, \(y\) -axis and z-axis respectively.
    \(\therefore \quad \cos \alpha=\cos 45^{\circ}=\frac{1}{\sqrt{2}}, \cos \beta=\cos 60^{\circ}=\frac{1}{2}\)
    since \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\)
    \(\therefore \quad \frac{1}{2}+\frac{1}{4}+\cos ^{2} \gamma=1\)
    \(\Rightarrow \quad \cos ^{2} \gamma=\frac{1}{4}\)
    \(\Rightarrow \quad \cos \gamma=\pm \frac{1}{2}\)
    \(\Rightarrow \quad \gamma=60^{\circ}\) or \(120^{\circ}\)
    Hence the line makes an angle of \(60^{\circ}\) with the positive direction of z-axis.
    Hence, the correct option is (A)
  • Question 8
    1 / -0

    The co-ordinates of the point which divides the line segment joining the points (5,4, 2) and (−1,−2, 4) in the ratio 2 : 3 externally is

    Solution
    Let \(\mathrm{A}(5,4,2)\) and \(\mathrm{B}(-1,-2,4)\) be the given points.
    Let \(\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})\) be the point, which divides the line segment \([\mathrm{AB}]\) in the ratio -2: 3
    \(\therefore\) The co-ordinates of P are:
    \(\left(\frac{(-2)(-1)+3(5)}{-2+3}, \frac{(-2)(-2)+3(4)}{-2+3}, \frac{(-2)(4)+3(2)}{-2+3}\right)\)
    \(=\left(\frac{2+15}{1}, \frac{4+12}{1}, \frac{-8+6}{1}\right)=(17,16,-2)\)
    Hence, the correct option is (A)
  • Question 9
    1 / -0

    The third vertex of the triangle whose centroid is (7,−2, 5) and whose other two vertices are (2, 6, −4) and (4,−2, 3) is

    Solution
    Let \(\mathrm{A}(2,6,-4)\) and \(\mathrm{B}(4,-2,3)\) be the two given vertices of the triangle. Let \(\mathrm{C}(\alpha, \beta, \gamma)\) be the third vertex
    since \(\mathrm{G}(7,-2,5)\) is the centroid of \(\Delta \mathrm{ABC}\),
    \(\therefore 7=\frac{2+4+\alpha}{3},-2=\frac{6-2+\beta}{3}\)
    \(5=\frac{-4+3+\gamma}{3}\)
    \(\Rightarrow 6+\alpha=21,4+\beta=-6,-1+\gamma=15\)
    \(\Rightarrow \alpha=15, \beta=-10, \gamma=16\)
    Hence \(\mathrm{C}(15,-10,16)\) is the third vertex.
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    The vertices of a triangle are A(x1, x1 tan α), B (x2, x2 tan β) and C(x3, x3tan γ) . If the circumcentre of ΔABC coincides with the origin and H (a,b) be its orthocentre, then a/b is equal to: (Here α, β and γ are acute angles)

    Solution
    Let \(R\) be the radius of the circumcircle and \(O\) be the origin, then, \(A O=\sqrt{\left(x_{1}^{2}+x_{1}^{2} \tan ^{2} \alpha\right)}\)
    \(\Rightarrow \quad R = x _{1} \sec \alpha\)
    \(\Rightarrow \quad x_{1}=R \cos \alpha\)
    Similarly, \(x_{2}=R \cos \beta\) and \(x_{3}=R \cos \gamma\)
    So, the coordinates of vertices are \(A ( R \cos \alpha, R \sin \alpha), B ( R \cos \beta, R \sin \beta), C ( R \cos \gamma, R \sin \gamma)\)
    Hence, the coordinates of centroid \(G\) are
    \(\left(\frac{\Sigma R \cos \alpha}{3}, \frac{\Sigma R \sin \alpha}{3}\right)\)
    since, the orthocentre \(H ( a , b ),\) circumcentre \(O (0,0)\) and the centroid G are collinear therefore, slope of \(OH =\) slope of \(OG\) \(\Rightarrow \frac{b}{a}=\frac{R(\sin a+\sin \beta+\sin \gamma)}{ R (\cos \alpha+\cos \beta+\cos \gamma)}\)
    \(\therefore \quad \frac{ a }{ b }=\frac{\cos \alpha+\cos \beta+\cos \gamma}{\sin \alpha+\sin \beta+\sin \gamma}\)
    Hence, the correct option is (D)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now
OSZAR »