Self Studies

Mathematics Test - 20

Result Self Studies

Mathematics Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of K, for which the equation (K–2)x2 + 8x + K + 4 = 0 has both the roots real distinct and negative is:

    Solution
    \((K-2) x^{2}+8 x+K+4=0\)
    \(x^{2}+\frac{8}{(K-2)} x+\frac{K+4}{(K-2)}=0\)
    Let \(f(x)=x^{2}+\frac{8}{(K-2)} x+\frac{K+4}{(K-2)}\)
    If the equation \(f(x)=0,\) has real distinct and negative roots then:
    \(D>0 \& f(0)>0 \&-\frac{B}{2 A}<0\)
    (i) \(D>0 \frac{8^{2}}{(\mathrm{K}-2)^{2}}-4 \frac{(\mathrm{K}+4)}{\mathrm{K}-2}>0\)
    \(64-4\left(k^{2}+2 K-8\right)>0\)
    \(-k^{2}-2 K+24<0 K^{2}+2 K-24<0\)
    \((K+6)(K-4)<0\)
    (ii)\( \left(f(0)>0 \frac{(K+4)}{(K-2)}>0\right).\)
    \(\Rightarrow \mathrm{K}<-4\) or \(\mathrm{K}>2\)
    (iii) \(-\frac{B}{2 \Lambda}<0-\frac{8}{2(K-2)}<0 \frac{4}{(K-2)}>0\)
    \(\mathrm{K}-2>0\)
    \(K>2\)
    \(\therefore D>0 \& f(0)>0 \&\)
    \(-\frac{B}{2 A}<0\)
    \(-6<\mathrm{K}<4 \&(\mathrm{K}<-4\) or \(\mathrm{K}>2) \& \mathrm{K}>2\)
    \(-6<\mathrm{K}<48 \mathrm{k}<-48 \mathrm{K}>2)\) or \((\mathrm{K}>28 \mathrm{K}>2\)
    -62)
    \(2<\mathrm{K}<4\)
    \(\mathrm{K} \in(2,4)\)
    Hence, the correct option is C.
  • Question 2
    1 / -0

    If A and B are two square matrices such that B = –A–1 BA, then (A+B)2 is equal to

    Solution
    \(\mathrm{B}=-\mathrm{A}^{-1} \mathrm{BA}\)
    \(\mathrm{AB}=\mathrm{A}\left(-\mathrm{A}^{-1} \mathrm{BA}\right)\)
    \(\left.\mathrm{AB}=-\mathrm{AA}^{-1} \mid \mathrm{BA}\right)\)
    \(\mathrm{AB}=-\mathrm{BA}\)
    \(\mathrm{AB}+\mathrm{BA}=0\)
    Now, \((\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}+\mathrm{BA}\)
    \((\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2},(\because \mathrm{AB}+\mathrm{BA}=0)\)
    Hence, the correct option is B.
  • Question 3
    1 / -0

    For \(n \geq 2\) the product \(\left\{1+\alpha,\{\}+\alpha^{2}\right\}\left\{1+\alpha^{2^{2}}\right\}, \ldots,\left\{1+\alpha^{2^{n}}\right\},\) where \(\alpha=\left(\frac{1+i}{2}\right),\) is equal to...

    Solution
    Let \(\frac{1+i}{2}=x\) Hence the given series \(S\) is \(S=\left(1+\mathrm{x} / 1+\mathrm{x}^{2}\right)\left(1+\mathrm{x}^{4}\right) \cdot\left(1+\mathrm{x}^{2^{\mathrm{n}}}\right)\)
    \(\mathrm{S}(1-\mathrm{x})=1-\mathrm{x}^{2^{\mathrm{n}}-1}\)
    \(\mathrm{S}=\frac{1-\mathrm{x}^{2} \mathrm{n}+1}{1-\mathrm{x}}=\frac{1-\mathrm{x}^{2+1}}{1-\frac{1+\mathrm{i}}{2}}\)
    \(=\frac{1-\left(\frac{1+i}{\sqrt{2}} \cdot \frac{\sqrt{2}}{2}\right)^{2^{n+1}}}{\left(\frac{1-i}{2}\right)}=\frac{1-\left(\frac{1+i}{\sqrt{2}}\right)^{2^{n+1}}\left(\frac{\sqrt{2}}{2}\right)^{2^{n+1}}}{\left(\frac{1-i}{2}\right)}\)
    \(=\frac{2\left(1+i\left\{1-(-1)^{2^{n-1}} 2^{-2^{n}}\right\}\right.}{2}\)
    \(=\left(1+i\left(1-2^{-2^{n}}\right)\left(\because n \geq 2 \Rightarrow(-1)^{2^{n-1}}=1\right)\right.\)
    Hence, the correct option is A.
  • Question 4
    1 / -0
    All the roots of \(a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=3\), where \(\left|\mathrm{a}_{i}\right| \leq 1(\mathrm{i}=1,2,3,4)\)
    Solution
    If possible let \(z=\) re \(\mathrm{i} \theta\) be a root which lies inside \(|z|=2 / 3 .\) Hence \(0 \leq \mathrm{r}<2 / 3\) Hence \(a_{1}\left(\mathrm{re}^{\mathrm{i} \theta}\right)^{3}+\mathrm{a}_{2}\left(\mathrm{re}^{\mathrm{i} \theta}\right)^{2}+\mathrm{a}_{3}\left(\mathrm{re}^{\mathrm{i} \theta}\right)+\mathrm{a}_{4}=3\)
    Comparing real parts we get \(a_{1} t^{3} \cos 3 \theta+a_{2} r^{2} \cos 2 \theta+a_{3} r \cos \theta+a_{4}=3\)
    but \(\left(\mathrm{r}^{3} \mathrm{a}_{1} \cos 3 \theta+\mathrm{r}^{2} \mathrm{a}_{2} \cos 2 \theta+\mathrm{ra}_{3} \cos \theta+\mathrm{a}_{4}\right)\)
    \(\leq r^{3}+r^{2}+r+1\)
    (Qlail \(\leq 1 \&\) so also \(\cos 3 \theta, \cos 2 \theta \& \cos \theta)\)
    \(3 \leq r^{3}+r^{2}+r+1\)
    \(\frac{r^{4}-1}{r-1} \geq 3\)
    \(\frac{1-r^{4}}{1-r} \geq 3\)
    \(\frac{1}{1-r} \geq 3\)
    \(1-r \leq \frac{1}{3}\)
    \(1-\frac{1}{3} \leq\)
    \(r \geq 2 / 3\)
    Which is a contradiction to the assumption \(0 \leq x<2 / 3\). Hence no root of the given equation can lie inside the circle. \(|z|=\frac{2}{3}\)
    Hence, the correct option is A.
  • Question 5
    1 / -0

    The coefficient of the term independent of x in the expansion of \(\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}\)is:

    Solution
    The general term of the expansion of \(\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}\) is
    \(T_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{3}{2} \mathrm{x}^{2}\right)^{9-\mathrm{r}}\left(-\frac{1}{3 \mathrm{x}}\right)^{\mathrm{r}}\)
    \(={ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{3}{2}\right)^{9-\mathrm{t}}\left(-\frac{1}{3 \mathrm{x}}\right)^{\mathrm{r}}\)
    The coefficient of independent of \(x\) in the expansion of \(\left(1+x+2 x^{3}\right)\) \(\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}=\) sum of coefficient of \(x^{0}, x^{-1} 2 x^{-3}\) in expansion of \(\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}\)
    (i) For coefficient of \(x^{0}: 18-3 r=0,,\) according to (1)\(: r=6 .\) Put in (i):
    \(T_{7}={ }^{9} \mathrm{C}_{6}\left(\frac{3}{2}\right)^{9-6}\left(-\frac{1}{3}\right)^{6}={ }^{9} \mathrm{C}_{3}\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{1}{3}\right)^{6}\)
    \(={ }^{9} \mathrm{C}_{3} \frac{1}{6^{3}}=\frac{7}{18}\)
    (ii) For Coefficient of \(x^{-3}: 18-3 r=-1\) or, \(r=19 / 3=\) fraction. No such term exists.
    (iii) For coefficient of \(2 x^{-3}: 18-3 r=-3\) or, \(r=7 .\) Put in (i):
    \(\mathrm{T}_{8}=2\left[9 \mathrm{C}_{7}\left(\frac{3}{2}\right)^{9-7}\left(-\frac{1}{3}\right)^{7}\right]\)
    \(=\left(9 \mathrm{C}_{2}\right)\left(2\left(\frac{3}{2}\right)^{2}(-1)\left(\frac{1}{3}\right)^{7}=-\frac{2}{27}\right.\)
    Sum of coefficients \(=\frac{7}{18}-\frac{2}{27}=\frac{17}{54}\)
    Hence, the correct option is C.
  • Question 6
    1 / -0

    a, b, c are positive numbers and abc2 has the greatest value 1/ 64. Then...

    Solution
    We have,
    \(\frac{a+b+\frac{c}{2}+\frac{c}{2}}{4} \geq \sqrt[4]{a b \cdot \frac{c}{2} \cdot \frac{c}{2}}\)
    or, \(\frac{a+b+c}{4} \geq \sqrt[4]{\frac{a b c^{2}}{4}}\)
    \(\therefore\left(\frac{a+b+c}{4}\right)^{4} \geq \frac{a b c^{2}}{4}\)
    or \(a b c^{2} \leq \frac{1}{64}(a+b+c)^{4}\)
    \(\therefore\) the greatest value of \(a b c^{2}=\frac{1}{64}(a+b+c)^{4}\)
    Also for the greatest value of abc \(^{2}\) the numbers have to be equal, i.e \(a=b=c / 2\) Also given that maximum value \(=1 / 64\) \(\mathrm{s} 0, \mathrm{a}+\mathrm{b}+\mathrm{c}=1\)
    i.e. \(a=b=1 / 4, c=1 / 2\)
    Hence, the correct option is B.
  • Question 7
    1 / -0

    If \(f(x)=x+\frac{1}{x} \nabla x \in R-(0)\) then,

    Solution
    \(f(x)=x+\frac{1}{x} f\left(x^{3}\right)=x^{3}+\frac{1}{x^{3}}\)
    \(f(x)=x+\frac{1}{x}=f\left(\frac{1}{x}\right)=\frac{1}{x}+x f(x)=f\left(\frac{1}{x}\right)\)
    \(\therefore f^{3}(x)=\left(x+\frac{1}{x}\right)^{3}\)
    \(=\left(x^{3}+\frac{1}{x^{3}}\right)+3 x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right)\)
    \(=\left(x^{3}+\frac{1}{x^{3}}\right)+3\left(x+\frac{1}{x}\right)\)
    \(=f\left(x^{3}\right)+3 f(x)\)
    \(=f\left(x^{3}\right)+3 f\left(\frac{1}{x}\right) \cdot\left[\because f(x)=f\left(\frac{1}{x}\right)\right]\)
    Hence, the correct option is A.
  • Question 8
    1 / -0

    The value of \(\lim _{x \rightarrow 1} \frac{3^{x+1}-9}{4^{2 x+1}-64}\) is...

    Solution
    Substitute \((x-1)=t .\)
    \(\mathrm{x} \rightarrow 1(\mathrm{x}-1) \rightarrow 0 \mathrm{t} \rightarrow 0\)
    Here given limit is:
    \(\lim _{x \rightarrow 1} \frac{3^{x+1}-9}{4^{2 x+1}-64}=\lim _{t \rightarrow 0} \frac{3^{t+2}-9}{4^{2(t+1)+1}-64}\)
    \(=\lim _{t \rightarrow 0} \frac{3^{t} \cdot 3^{2}-3^{2}}{4^{2 t} \cdot 4^{3}-4^{3}}=\lim _{t \rightarrow 0} \frac{9\left(3^{t}-1\right)}{64\left(4^{2 t}-1\right)}\)
    \(=\lim _{t \rightarrow 0} \frac{9}{64} \frac{\left(\frac{3^{t}-1}{t}\right) \cdot t}{\left(\frac{4^{2 t}-1}{2 t}\right) \cdot 2 t}=\lim _{t \rightarrow 0} \frac{9}{64} \cdot \frac{\ln 3}{\ln 4} \cdot \frac{1}{2}=\frac{9 \ln 3}{128 \ln 4}\)
    Hence, the correct option is B.
  • Question 9
    1 / -0

    The altitude of a cone is 20cm and its semi-vertical angle is 30 °. If the semi-vertical angle is increasing at the rate of 2 ° per second, then the radius of the base is increasing at the rate of.....

    Solution

    \(\frac{d \theta}{d t}=2^{\circ}\) per second
    \(=2 \times \frac{\pi}{180} \mathrm{rad} / \mathrm{sec}\)
    \(=\frac{\pi}{90} \mathrm{rad} / \mathrm{sec}\)
    \(\theta=30^{\circ}=\frac{\pi}{6} \mathrm{radian}\)
    Let \thetabe the semi-vertical angle and r be the base radius of the cone at time t. Then, \(r=20 \tan \theta\)
    \(\frac{\mathrm{dr}}{\mathrm{dt}}=20 \sec ^{2} \theta \frac{\mathrm{d} \theta}{\mathrm{dt}}\)
    \(\left.\frac{d r}{d t}\right]_{\theta=\frac{\pi}{6}}=\left(20 \sec ^{2} \frac{\pi}{6}\right) \times \frac{\pi}{90}\)
    \(\left.\frac{d r}{d t}\right]_{\theta=\frac{\pi}{6}}=20 \times \frac{4}{3} \times \frac{\pi}{90}=\frac{8 \pi}{27} \mathrm{cm} / \mathrm{sec}\)
    Hence, the correct option is B.

  • Question 10
    1 / -0

    The set of all values of the parameter a for which the points of minimum of the function \(y=1+a^{2} x-x^{3}\) Satisfy the inequality \(\frac{x^{2}+x+2}{x^{2}+5 x+6} \leq 0\) is,

    Solution
    \(y=1+a^{2} x-x^{3}\)
    \(y^{\prime}=a^{2}-3 x^{2}\)
    \(y^{\prime \prime}=-6 x\)
    \(y^{\prime}=0 a^{2}-3 x^{2}=0 x=\pm \frac{a}{\sqrt{3}}\)
    (i) Let \(a>0:\) Hence \(y^{/ /}>0\) for \(x=-\frac{a}{\sqrt{3}} .\) Hence \(\mathrm{y}\) has minima at \(x=-\frac{a}{\sqrt{3}}\) for \(\mathrm{a}>0 .\) \(\therefore-3<-\frac{a}{\sqrt{3}}<-2 \quad 2 \sqrt{3}<2<3 \sqrt{3}\)
    (ii) Let \(a<0\) :
    Hence \(y^{/ /}>0\) for \(x=\frac{a}{\sqrt{3}} .\) Hence \(y\) has minima at \(x=\frac{a}{\sqrt{3}}\) for \(a<0\). \(\therefore-3<\frac{a}{\sqrt{3}}<-2-3 \sqrt{3}<2<-2 \sqrt{3}\)
    From
    (i) \(8(\) ii \()\) a \(\in(-3 \sqrt{3},-2 \sqrt{3}) \cup(2 \sqrt{3}, 3 \sqrt{3})\)
    Hence, the correct option is \(D\).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now
OSZAR »